Sabtu, 14 Desember 2019


FUNGSI KOMPOSISI

Pengertian Fungsi Komposisi

Fungsi komposisi yaitu penggabungan operasi pada dua jenis fungsi f (x) dan g (x) hingga menghasilkan fungsi baru. Operasi fungsi komposisi biasa yaitu dilambangkan dengan “o” dan dibaca dengan komposisi atau bundaran.
Fungsi baru yang bisa terbentuk dari f (x) dan g (x) yaitu:
(f o g)(x) = g dimasukkan ke f

(g o f)(x) = f dimasukkan ke g
Fungsi tunggal itu merupakan fungsi yang bisa dilambangkan dengan huruf “f o g” ataupun juga bisa dibaca dengan “fungsi f bundaran g”. Fungsi “f o g” ialah fungsi g yang dikerjakan terlebih dahulu lalu dilanjutkan dengan f. Sedangkan, untuk fungsi “g o f” dibaca dengan fungsi g bundaran f. Maka, “g o f” ialah fungsi dengan f dikerjakan terlebih dahulu daripada g.

Rumus Fungsi Komposisi

 


Fungsi Komposisi
Dari rumus tersebut, definisi yang di dapat ialah :
Jika f : A → B ditentukan rumus y = f (x)
Jika g : B → C ditentukan rumus y = g (x)
Jadi, hasil fungsi g dan f :
h (x) = (g o f)(x) = g( f(x))
Dari penjelasan tersebut bisa disimpulkan bahwa fungsi yang melibatkan fungsi f dan g bisa ditulis :
(g o f)(x) = g (f(x))
(f o g)(x) = f (g(x))

Contoh Soal

Diberikan dua buah fungsi yang masing-masing f (x) dan g (x) berturut-turut yaitu :
f (x) = 3x + 2
g (x) = 2 − x
Tentukanlah:
a) (f o g) (x)
b) (g o f) (x)
Jawaban
Data:
f (x) = 3x + 2
g (x) = 2 − x
a) (f o g)(x)
“Masukkanlah g (x) nya kef (x)”
hingga menjadi:
(f o g)(x) = f ( g(x) )
= f (2 − x)
= 3 (2 − x) + 2
= 6 − 3x + 2
= − 3x + 8
b) (g o f ) (x)
“Masukkanlah f (x) nya ke g (x)”
Hingga menjadi :
(f o g) (x) = g (f (x) )
= g ( 3x + 2)
= 2 − ( 3x + 2)
= 2 − 3x − 2
= − 3x


 


Tidak ada komentar:

Posting Komentar